A' LEVEL BASIC QUALITATIVE ANALYSIS EXPOSED

INORGANIC COMPOUNDS

Qualitative analysis is the determination of **elements or ions** present in a given substance by carrying out specific tests and making keen observations of the changes that take place.

In this case the commonly observed changes include the following:

- Color changes
- Precipitate formed
- ➤ Gases evolved
- > Sound
- > Smell etc.

AN ION

An ion is an atom or a group of atoms that have charges. The charges may either be positive or negative

TYPE OF IONS

There are **two types** of ions

i. Cations: These are positively charged ions. The common cations identified in A' level chemistry include:

$$Ca^{2+}$$
, Mg^{2+} , Cu^{2+} , Pb^{2+} , Al^{3+} , Zn^{2+} , NH_4^+ , Fe^{2+} , Fe^{3+} , Ba^{2+} , Ni^{2+} , Ag^+ , Co^{2+} , Mn^{2+} , Cr^{3+} , Sn^{2+}

ii. Anions: These are negatively charged ions. The common anions identified in A 'level chemistry include the following; Cl^- , SO_4^{2-} , CO_3^{2-} , NO_3^- , HCO_3^- , SO_3^{2-} , Br^- , I^- , $C_2O_4^{2-}$, CrO_4^{2-} , S^{2-} , CH_3COO^- , $S_2O_3^{2-}$.

IDENTIFICATION OF UNKNOWNS

1. APPEARANCE

Note the color, smell if any and the physical state of the given salt sample or substance

Appearance of the solid sample(color) (observation)		Deduction
i.	Black	Oxide of Copper, Cu^{2+} probably present or Sulphides of Cu^{2+} , $Ni^{2+}Ag^+$, Co^{2+} , Pb^{2+} or Fe^{2+}
ii.	Blue	Hydrated salt of copper, $Cu^{2+}Ni^{2+}$, Cr^{3+} or Fe^{2+} probably present or Co^{2+} (an hydrous)
iii.	Green	Hydrated salts of Copper (II), Nickel (II), Chromium (III) or Iron (II), Cu^{2+} , Ni^{2+} , Cr^{3+} or Fe^{2+} probably present.
iv.	Yellow/brown	Lead(II)oxide(in case of solid) or Iron(III) salt probably present
V.	White solid	Salts of Ca^{2+} , Mg^{2+} , Pb^{2+} , Al^{3+} , Zn^{2+} , NH_4^+ , Ba^{2+} , probably present
vi.	Orange-red color	Cr^{6+} (from a dichromate)
vii.	Purple	<i>Mn</i> ⁷⁺ (from a permanganate)
viii.	Pink	Hydrated salts of Manganese, Mn^{2+} present
ix.	Yellow color	Chromate or ferric salt
Х.	Pink or red	Hydrated salt of Mn^{2+} or Co^{2+}

2. SMELL/ODOUR

Very few inorganic salts have recognizable Odours at room temperature. When a small amount of the unknown is gently heated; the following characteristic smells may be detected.

(Smell) Observation	Deduction
 Smell of ammonia (pungent, 	Ammonium salt, NH_4^+ present
chocking smell "smell of urine")	
 Smell of hydrogen sulphide 	<i>S</i> ^{2−} present
(pungent, rotten egg smell)	
NB. H_2S is poisonous, smell with	
care	
 Smell of sulphur dioxide 	Normal and acid sulphates,
(poisonous, sharp chocking smell of	thiosulphate or sulphites
burning sulphur), smell with care	

Smell of chlorine (pungent,	Bleaching powder (CaOCl ₂)
poisonous and bleaches, smell with	
care)	

NB:

- If the substance is a **crystalline solid** then; $Cl^-, SO_4^{2-}, NO_3^-, C_2O_4^{2-}, S_2O_3^{2-}$ is probably present
- If the substance is in **powder** form then **carbonates or oxides** are more likely
- If the substance is **deliquescent** then **chloride ion** is probably present

3. ACTION OF HEAT ON A SUBSTANCE

Heat a little of the substance in a dry test tube until no further change occurs, Note what happens and test for the gas evolved.

a) GASES EVOLVED DURING HEATING

Observa	tion	Deduction
i.	Colourless liquid condenses at the cooler parts of the test- tube which is neutral to litmus paper and turns white anhydrous copper(II) sulphate blue	Water of crystallization(hydrated salt) present or may be HCO_3^- , OH - or HSO_4^- present
ii.	Brown fumes of a gas which turn damp blue litmus paper red and darkens <i>FeSO₄ solution</i> , does not bleach litmus are evolved	NO_2 gas, NO_3^- probably present
iii.	Colourless gas with a pungent chocking smell which turns damp red litmus paper blue is evolved and forms white fumes with <i>HClgas</i> . White sublimate formed on the middle part of the test tube	Ammonia gas produced, <i>NH</i> ₄ ⁺ present
iv.	Colourless, odourless gas, neutral to litmus which relights a glowing splint is given off	Oxygen gas produced, O^{2-} , ClO_3^- , NO_3^- , peroxides (e.g. H_2O_2), higher oxides probably present
V.	Colourless gas which turns damp blue litmus paper red(pink) and lime water milky	CO_2 gas produced, CO_3^{2-} or HCO_3^{-} or $C_2O_4^{2-}$ probably present

vi.	Colourless gas with pungent chocking smell which forms white fumes in air and turns damp blue litmus red and $AgNO_3$ solution milky. Forms dense white fumes with Conc. NH_3 solution	HCl produced, Cl ⁻ present
vii.	White (smoky) fumes, turns damp blue litmus red and BaCl ₂ or Ba(NO ₃) ₂ solution milky	SO₃ produced, HSO₄ or SO₄ present
viii.	Colourless gas with sharp chocking smell (like burning sulphur), turns blue litmus red, turns orange $Cr_2O_7^2$ —solution to green and purple MnO_4 —solution to colourless	SO_2 gas produced
ix.	Crystalline solid melts on strong heating to give a cream solid on cooling	SO_3^{2-} present SO_3^{2-} decomposed to sulphur and SO_2 gas
X.	Crystalline solid formed white residue which turns yellow on strong heating, SO_2 gas may also be produced.	$S_2O_3^{2-}$ present $S_2O_3^{2-}$ decomposed to sulphur (yellow) which melts to thick black liquid.
xi.	Yellow residue formed, turned brown and gave a black viscous liquid	$S_2O_3^{2-}$ present $S_2O_3^{2-}$ decomposed to sulphur (yellow) which melts to thick black liquid.

b) NATURE OF RESIDUE FORMED DURING/ AFTER HEATING

Obse	rvation	Deduction
i.	Residue is yellow when hot and white when cold	ZnO formed, Zn^{2+} present
ii.	Residue is brown(Red) when hot and yellow when cold	<i>PbO</i> formed, <i>Pb</i> ²⁺ present
iii.	The solid turns from blue/ green to black	CuO is formed, Cu^{2+} present
iv.	The solid turns from blue to white. Droplets of a colorless liquid are formed at the cooler parts of the test-tube	Anhydrous Copper (II) sulphate is formed. Water of crystallization(hydrated salt) present

V.	Green solid turns black	CuO, FeO, or NiO formed, Cu ^{2+,} ,Fe ²⁺ or Ni ²⁺ suspected present
vi.	Pink to blue, then to black on	Co ²⁺ present
	strong heating	CoO formed from Hydrated Co ²⁺
vii.	Yellow-brown solid to red-brown	Fe ³⁺ present
	solid	<i>Fe</i> ₂ <i>O</i> ₃ formed
viii.	Crystalline orange to green	Cr^{6+} (from $Cr_2O_7^{2-}$)
		<i>Cr</i> ₂ <i>O</i> ₃ formed
ix.	Red brown solid forms red liquid	Pb^{4+} , (PbO_2) reduced to Pb^{2+} (in PbO)
	on heating, yellow glassy residue	O_2 gas produced
	remained. A colourless gas that	
	relights a glowing splint is	
	produced	
X.	Red-orange solid initially darkens	Pb ₂ O ₄ (PbO or PbO ₂) decomposed to PbO
	on heating, then melts to a red	O_2 gas produced
	liquid which cools to form a	
	yellow residue. A colourless gas	
	that relights a glowing splint is	
	produced	
xi.	No observable change	The solid is thermally stable,
		0^{2} or SO_4^{2} probably present

4. IDENTIFICATION OF GAS

This is also very important in qualitative analysis because it gives clue to the ions present in the given sample

Gas	Color and smell	Test	Observation
Carbon dioxide	Colourless and	Bubble gas into	Lime-water turns
(acidic)	odourless	lime water	milky
Oxygen	Colourless and odourless	Lowering a glowing splint in a tube	Splint rekindles(relights)
Ammonia (alkaline)	Colourless and chocking smell	 Expose to damp red litmus paper Expose to hydrogen chloride fumes 	 Litmus paper turns blue Dense white fumes are formed
Nitrogen dioxide (acidic)	Brown fumes and irritating smell	Expose to damp blue litmus paper	Litmus paper turns red

Hydrogen	Colourless and	Expose to ammonia	Dense white fumes
chloride	irritating smell	fumes	
(acidic)			
Sulphur dioxide	Colourless	 Bubble it 	• $K_2Cr_2O_7$ turns
(acidic)		through	from orange to
		acidified	green
		$K_2Cr_2O_7$	• <i>KMnO</i> ₄ turns
		 Or acidified 	from purple to
		$KMnO_4$	colourless

NB:

All acidic gases turn damp blue litmus paper to red while alkaline gases e.g. ammonia gas turns red litmus blue.

5. SOLUBILITY OF A SUBSTANCE

Here take note of whether the substance completely or partly dissolves in a given solvent (e.g. water). Also take note of the colour of the resultant solution formed.

Obse	rvation	Deduction
i.	White solid dissolves forming a colourless solution	Ca^{2+} , Mg^{2+} , Pb^{2+} , Al^{3+} , Zn^{2+} , NH_4^+ , $Ba^{2+}Mn^{2+}$ (very pale pink) probably present
ii.	Brown/yellow solid dissolves forming a brown or yellow solution which turns damp blue litmus red.	Fe ³⁺ present
iii.	Green solid dissolves forming a green solution.	Hydrated salt of Fe^{2+} , $Cu^{2+}Ni^{2+}$ or Cr^{3+} probably present
iv.	Blue solid dissolves giving a blue solution.	Hydrated salt of $Cu^{2+}Ni^{2+}$, Cr^{3+} or Fe^{2+} probably present.
V.	Yellow solid dissolves giving a yellow solution	Fe^{3+} or Cr^{6+} (from CrO_4^{2-}) suspected present
vi.	An orange solid dissolves giving an orange solution	Cr^{6+} (from $Cr_2O_7^{2-}$) suspected present
vii.	Purple solid dissolves giving a purple solution	Mn^{7+} (from a permanganate) or Cr^{3+} (from conc. Solutions)
viii.	Pink or red solid dissolves giving pink or	Hydrated Co^{2+} or Mn^{2+} (very pale pink usually invisible in solution)

	red solution	
ix.	Pale green solid dissolves forming a pale	Hydrated salt of Fe^{2+} , Cu^{2+} or Cr^{3+} probably present
	green solution.	

N.B

- ➤ All **nitrates** are **soluble** in water
- \rightarrow All K^+ , $NH_4^+Na^+$ salts are soluble in water
- ➤ All **carbonates** are **insoluble** in water except carbonates of potassium, sodium and ammonium.
- \triangleright All **sulphates** are soluble except $CaSO_4$ and Ag_2SO_4 which are sparingly soluble. BaSO₄ and PbSO₄ are insoluble in water
- \triangleright All **sulphites** are **soluble** except sulphites of Ca^{2+} , Ba^{2+} and Pb^{2+} .
- ➤ All **chlorides** are **soluble** in water except PbCl₂ which is sparingly soluble and AgCl which is insoluble in water
- ➤ **All chromates** are **soluble** except; *CaCrO*₄ is moderately soluble and *PbCrO*₄, *BaCrO*₄ and *Ag*₂*CrO*₄ are insoluble
- All oxalates and phosphates are insoluble except oxalates and phosphates of Mg^{2+} , K^+ , NH_4^+ and Na^+ .
- All hydroxides are insoluble except those of sodium, potassium and ammonium.
 Magnesium and calcium hydroxides are sparingly soluble in water.

6. DETECTION OF CATIONS

Cations are detected by use of Sodium hydroxide and Ammonia solution. In this case take note of whether the precipitate is formed or not and record the colour of the precipitate formed. Take note of whether also the precipitate dissolves in excess or not

a) Addition of sodium hydroxide solution

Ion	Test	Observation and equation
NH ₄ ⁺	To a solution of NH_4^+ ions in a test-tube add NaOH drop wise until in excess	No observable change. A colorless gas with a pungent chocking smell is given off on warming. The gas turns damp red litmus paper blue and forms white fumes with Conc. HCl Ionic equation:
		$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(g) + H_2O(l)$

Sn ²⁺	To a solution of Sn^{2+} ions in a test-tube add NaOH drop wise until in excess	White precipitate soluble in excess to form a colourless solution Ionic equation:
		$Sn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Sn(OH)_{2}(s)$ White ppt
		$Sn(OH)_2(s) + 4OH^-(aq) \rightarrow Sn(OH)_6^{4-}(aq)$ Stannate (II) ion (colourless)
Zn^{2+}	To a solution of Zn^{2+} ions in a test-tube add NaOH drop wise until in excess	White precipitate soluble in excess to form a colorless solution
		Ionic equation:
		$Zn^{2+}(aq) + 20H^{-}(aq) \rightarrow Zn(0H)_{2}(s)$ White ppt
		$Zn(OH)_2(s) + 2OH^-(aq) \rightarrow Zn(OH)_4^{2-}(aq)$ Zincate ion (colourless)
Mn ²⁺	To a solution of Mn^{2+} ions in a test-tube add NaOH drop wise until in excess	White precipitate insoluble in excess, darkens and turns brown on standing due to formation of <i>MnO</i> ₂ or <i>Mn</i> ₂ <i>O</i> ₃
		Ionic equation:
		$Mn^{2+}(aq) + 20H^{-}(aq) \rightarrow Mn(0H)_2(s)$ White ppt On standing:
		$2Mn(OH)_2(s) + O_2(g) \rightarrow 2MnO_2 \cdot H_2O(s)$
		(brown ppt)

Al^{3+}	To a solution of Al^{3+} ions in a test- tube add NaOH drop wise until in	White precipitate soluble in excess to form a colourless solution.
	excess	Ionic equation:
		$Al^{3+}(aq) + 30H^{-}(aq) \rightarrow Al(0H)_{3}(s)$ White ppt
		$Al(OH)_3(s) + OH^-(aq) \rightarrow Al(OH)_4^-(aq)$ (Aluminate ion) (colourless)
Pb ²⁺	To a solution of Pb^{2+} ions in a test-tube add NaOH drop wise until in excess	White precipitate soluble in excess to form a colourless solution
		Ionic equation:
		$Pb^{2+}(aq) + 20H^{-}(aq) \rightarrow Pb(0H)_{2}(s)$ White ppt
		$Pb(OH)_2(s) + 2OH^-(aq) \rightarrow Pb(OH)_4^{2-}(aq)$ Plumbate ion (colourless)
Mg ²⁺ Ca ²⁺	To a solution of $Mg^{2+}orCa^{2+}$ ions in a test-tube add NaOH drop wise until in excess	White precipitate insoluble in excess (conc. Solutions of $Mg^{2+}orCa^{2+}$)
	Wise and in cheese	Ionic equation:
		$Mg^{2+}(aq) + 20H^{-}(aq) \rightarrow Mg(0H)_{2}(s)$ White ppt
		$Ca^{2+}(aq) + 20H^{-}(aq) \rightarrow Ca(0H)_{2}(s)$ White ppt
Ba ²⁺	To a solution of Ba^{2+} ions in a test-tube add NaOH drop wise until in excess	No observable change
Cu^{2+}	To a solution of Cu^{2+} ions in a test-tube add NaOH drop wise	A pale blue precipitate insoluble in excess
	until in excess	Ionic equation:
		$Cu^{2+}(aq) + 20H^{-}(aq) \rightarrow Cu(0H)_{2}(s)$ A pale blue ppt
		N.B The pale blue ppt turns black on heating due to formation of <i>CuO</i>

		$Cu(0H)_2(s) \rightarrow CuO(s) + H_2O(l)$
Co ²⁺	To a solution of Co^{2+} ions in a test- tube add NaOH drop wise until in excess	A pale or light blue precipitate insoluble in excess
	CACCOO	Ionic equation:
		$Co^{2+}(aq) + 20H^{-}(aq) \rightarrow Co(0H)_{2}(s)$ A pale blue ppt
		N.B The pale blue ppt turns grey-pink (or brown) on standing due to oxidation of Co^{2+} to Co^{3+}
п 2+	m 1 CF 2+	A 1:
Fe ²⁺	To a solution of Fe^{2+} ions in a test-tube add NaOH drop wise until in excess	A dirty green precipitate insoluble in excess. The dirty green precipitate turns brown on standing due to oxidation of Fe^{2+} to Fe^{3+}
		Ionic equation:
		$Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$
		A dirty green ppt N.B Oxidation reaction
		$4 \operatorname{Fe}(\mathbf{OH})_{2}(\mathbf{s}) + O_{2}(g) \to Fe_{2}O_{3}.2H_{2}O(s)$
Ni ²⁺	To a solution of <i>Ni</i> ²⁺ ions in a test-tube add NaOH drop wise	A green precipitate insoluble in excess.
	until in excess	Ionic equation:
		$Ni^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ni(OH)_{2}(s)$
		A green ppt
Fe ³⁺	To a solution of Fe^{3+} ions in a test-tube add NaOH drop wise until in	A brown or yellow precipitate insoluble in excess.
	excess	Ionic equation:
		Fo ³⁺ (o ₂) + 20H ⁻ (o ₂) + Fo(OH) (o ₂)
		$Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$ A brown/yellow ppt
Cr ³⁺	To a solution of Cr^{3+} ions in a test-tube add NaOH drop wise until in excess	A grey-green precipitate soluble in excess giving a dark green solution

		Ionic equation:
		$Cr^{3+}(aq) + 30H^{-}(aq) \rightarrow Cr(0H)_{3}(s)$
		A grey-green ppt
		In excess:
		$Cr(OH)_3(s) + 3OH^-(aq) \rightarrow Cr(OH)_6^{3-}(aq)$
		Chromite ion
		(dark green solution)
$Cr_2O_7^{2-}$	To a solution of $Cr_2O_7^{2-}$ ions in a	The solution changes from orange to yellow
,	test-tube add NaOH drop wise until in excess	$Cr_2O_7^2$ present, $Cr_2O_7^2$ converted to CrO_4^2
		$Cr_2O_7^{2-}(aq) + 2OH^-(aq) \rightarrow 2CrO_4^{2-}(aq) + H_2O(l)$

SUMMARY Add sodium hydroxide solution drop-wise until in excess

Observation	Deduction
No observable change. A colourless gas with a chocking smell that turns damp red litmus paper blue is evolved on heating. The gas also forms white fumes with hydrogen chloride gas	Ammonia gas, NH ⁺ ₄ present
White precipitate soluble in excess	Pb^{2+} , Al^{3+} , Zn^{2+} , Sn^{2+} , Sn^{4+} probably
	present
 White precipitate insoluble in excess 	Ca^{2+} , Mg^{2+} probably present
No observable change	Ba^{2+} probably present
 White ppt insoluble in excess, 	Mn^{2+} present
darkens or turns brown on standing	
 A pale blue precipitate insoluble in 	Cu ²⁺ present
excess and turns black on heating	CuO formed on heating
A dirty green precipitate insoluble in	Fe ²⁺ present
excess and turns brown on standing	Fe^{2+} oxidized to Fe^{3+}
A brown precipitate insoluble in excess	Fe ³⁺ present
 A pale blue precipitate insoluble in excess and turns grey- pink (or brown) on standing 	Co^{2+} present Co^{2+} oxidized to Co^{3+}
 A green precipitate insoluble in excess 	<i>Ni</i> ²⁺ present

•	Grey-green ppt soluble in excess	Cr ³⁺ present
	giving a dark green solution	

b) Addition of ammonia solution

Ion	Test	Observation and equation
Zn^{2+}	To a solution of Zn^{2+} ions in a test- tube add ammonia solution drop wise until in excess	White precipitate soluble in excess to form a colourless solution
	wise until ill excess	Ionic equation:
		$Zn^{2+}(aq) + 20H^{-}(aq) \rightarrow Zn(0H)_{2}(s)$ White ppt
		$Zn(OH)_2(s) + 4NH_3(aq) \rightarrow Zn(NH_3)_4^{2+}(aq) + 2OH^-(aq)$ Tetra ammine zinc(II)ion (colourless)
Al^{3+}	To a solution of Al^{3+} ions in a test- tube add ammonia solution drop	White precipitate insoluble in excess.
	wise until in excess	Ionic equation:
		$Al^{3+}(aq) + 30H^{-}(aq) \rightarrow Al(0H)_{3}(s)$ White ppt
Pb^{2+}	To a solution of Pb^{2+} ions in a test- tube add ammonia solution drop	White precipitate insoluble in excess
	wise until in excess	Ionic equation:
		$Pb^{2+}(aq) + 20H^{-}(aq) \rightarrow Pb(0H)_{2}(s)$ White ppt
Mg^{2+}	To a solution of(conc.)	White precipitate insoluble in excess
Ba^{2+}	Mg^{2+} , Ba^{2+} ions in a test-tube add ammonia solution drop wise until	Ionic equation:
	in excess	$Mg^{2+}(aq) + 20H^{-}(aq) \rightarrow Mg(0H)_{2}(s)$ White ppt
		$Ca^{2+}(aq) + 20H^{-}(aq) \rightarrow Ca(0H)_{2}(s)$ White ppt
Ca^{2+}	To a solution of (conc.) Ca^{2+} ions in a test-tube add ammonia solution drop wise until in excess	No observable change

Sn ²⁺	To a solution of Sn^{2+} ions in a test- tube add ammonia solution drop wise until in excess	White precipitate insoluble in excess. Ionic equation: $Sn^{2+}(aq) + 20H^{-}(aq) \rightarrow Sn(0H)_{2}(s)$ White ppt
Mn ²⁺	To a solution of Mn^{2+} ions in a test-tube add ammonia solution drop wise until in excess	White precipitate insoluble in excess, darkens and turns brown on standing due to formation of MnO_2 or Mn_2O_3 Ionic equation: $Mn^{2+}(aq) + 20H^{-}(aq) \rightarrow Mn(0H)_2(s)$ White ppt On standing: $2Mn(OH)_2(s) + O_2(g) \rightarrow 2MnO_2 \cdot H_2O(s)$ (brown ppt)
Cu ²⁺	To a solution of Cu^{2+} ions in a test- tube add ammonia solution drop wise until in excess	A pale blue precipitate soluble in excess to form a deep solution Ionic equation: $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$ A pale blue ppt $Cu(OH)_{2}(s) + 4NH_{3}(aq) \rightarrow Cu(NH_{3})_{4}^{2+}(aq) + 2OH^{-}(aq)$ Tetra ammine copper(II) ions
Fe ²⁺	To a solution of Fe^{2+} ions in a test- tube add ammonia solution drop wise until in excess	A dirty green precipitate insoluble in excess. The dirty green precipitate turns brown on standing due to oxidation of Fe^{2+} to Fe^{3+} Ionic equation: $Fe^{2+}(\mathbf{aq}) + \mathbf{20H}^{-}(\mathbf{aq}) \rightarrow \mathbf{Fe(0H)_2(s)}$ $\qquad \qquad $
Ni ²⁺	To a solution of Ni^{2+} ions in a test- tube add ammonia solution drop wise until in excess	A green precipitate soluble in excess forming a pale blue/green solution.

		Ionic equation:
		$Ni^{2+}(\mathbf{aq}) + 2\mathbf{OH}^{-}(\mathbf{aq}) \rightarrow Ni(\mathbf{OH})_2(\mathbf{s})$
		A green ppt
		In excess $Ni(OH)_2(s) + 6NH_3(aq) \rightarrow Ni(NH_3)_6^{2+}(aq) + 2OH^-(aq)$ (a pale green solution)
Co ²⁺	To a solution of Co^{2+} ions in a test- tube add ammonia solution drop wise until in excess	Pink-blue/ dirty blue precipitate soluble in excess ammonia/ <i>NH₄Cl</i> solution, forms yellow-brown or red solution on standing or
		addition of H_2O_2 .
		Ionic equation:
		$Co^{2+}(aq) + 20H^{-}(aq) \rightarrow Co(0H)_{2}(s)$ A dirty blue ppt
		In excess
		$Co(OH)_2(s) + 6NH_3(aq) \rightarrow Co(NH_3)_6^{2+}(aq) + 2OH^-(aq)$
Cr ³⁺	To a solution of Cr^{3+} ions in a test- tube add ammonia solution drop wise until in excess	A grey-green precipitate insoluble in excess./ slightly soluble forming pink/violet solution Ionic equation:
		$Cr^{3+}(aq) + 3OH^{-}(aq) \rightarrow Cr(OH)_{3}(s)$
		A grey-green ppt
Fe ³⁺	To a solution of Fe^{3+} ions in a test- tube add ammonia solution drop wise until in excess	A brown or yellow precipitate insoluble in excess. Ionic equation:
		$Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$
		A brown/yellow ppt
Ag +	Brown ppt soluble in excess giving colorless solution	Ag^+ present, Ag_2O precipitated and dissolves forming Ag $(NH_3)_2^+$ ion.

SUMMARY

Add ammonia solution drop-wise until in excess

Observation	Deduction
White precipitate soluble in excess	Zn^{2+} present
White precipitate insoluble in excess	$Mg^{2+}Pb^{2+}$, Al^{3+} , $Ba^{2+}orSn^{2+}$ probably
	present
No observable change	Ca^{2+} probably present
White ppt insoluble in excess,	Mn ²⁺ present
darkens or turns brown on standing	
A pale blue precipitate soluble in	Cu ²⁺ present

Fe^{2+} present
Fe^{2+} oxidized to Fe^{3+}
Fe ³⁺ present
<i>Co</i> ²⁺ present
<i>Ni</i> ²⁺ present
Cr ³⁺ present

7. ACTION OF DILUTE HYDROCHLORIC ACID OR DILUTE SULPHURIC ACID

Observation	Deduction
No reaction in cold, bubbles of a colourless gas produced on warming. The colorless chocking gas produced turns orange K ₂ Cr ₂ O ₇ paper green and damp blue litmus red.	SO ₂ gas produced SO ₃ ²⁻ present
 No visible change/ reaction in cold and on warming. 	SO ₄ ²⁻ present
Solution turns slightly cloudy white (Pale yellow) and denser on warming. The colourless chocking gas produced turns orange K ₂ Cr ₂ O ₇ paper green and damp blue litmus red.	SO_2 gas produced. Sulphur is slowly precipitated $S_2O_3^{2-}$ present
 No reaction in cold. Bubbles of a pale blue gas are produced on warming. The chocking smell of the gas turns blue litmus red and bleaches it, KI solution turns brown. 	Cl_2 gas produced. $S_2O_8^{2-}$ present ClO^- also liberates Cl_2 gas with a dilute acid
Bubbles of a colourless gas which turn damp blue litmus pink(red) and lime water milky	CO_2 gas produced CO_3^{2-} or HCO_3^- present
 Colourless gas with rotten egg smell (poisonous) which turns damp blue litmus pink (red) and moist lead acetate paper black 	H ₂ S produced S ² -present PbS formed
Solution changes from yellow to	CrO ₄ ²⁻ present

orange	$CrO_4^{2-}turnstoCr_2O_7^{2-}$
Smell of vinegar	CH₃COO [−] present
White ppt soluble on warming and re	Pb ²⁺ present, PbCl ₂ precipitated
-appears on cooling	
White ppt insoluble in excess acid	Ag+ present. AgCl precipitated and dissolves
and on warming. Dissolves in	in ammonia solution to give $Ag(NH_3)_2^+$ ion
ammonia solution.	

NB:If no gas or vapour is produced but water insoluble solid dissolves in dilute sulphuric acid then metal oxides, OH^- present or salt of weak acid (stable and in volatile) ie. OH^- , PO_4^{3-} , $C_2O_4^{2-}$, CrO_4^{2-} , O^{2-} present. Pb^{2+} , Ca^{2+} , Ba^{2+} are absent

8. ACTION OF CONC. SULPHURIC ACID ON SOLID SALTS OF INORGANIC SALTS

Observation	Deduction
✓ Yellow solid turns to dark/ bright red solid. Heat is evolved	CrO_4^{2-} present, CrO_3 formed. Exothermic reaction
 ✓ Orange solid substance turns to dark/ bright red solid. Heat is evolved 	$Cr_2O_7^{2-}$ Present, CrO_3 formed. Exothermic reaction
✓ Colourless gas with rotten egg smell (Poisonous), turns damp blue litmus pink (red) and moist lead acetate paper black. Yellow white residue observed	H ₂ S produced S ² -present PbS and sulphur formed
✓ Colourless gas with chocking smell, fumes heavily in air and forms dense white fumes with conc. Ammonia	Cl- present Volatile HCl displaced
✓ On gentle warming colourless (pale brown) vapour slightly fumes in air. Colourless (pale yellow) liquid/condensate flours down the sides of the test tube. Brown fumes of pungent gas produced on continued heating	NO ₃ present Volatile HNO ₃ displaced NO ₂ gas produced
✓ Frothy effervescence of red- brown vapour, pungent, fuming heavily in air. Red- brown liquid condenses and runs back. Gas bleaches litmus	Br^- present Volatile HBr displaced Some oxidation to Br_2
✓ Frothy effervescence of red- brown vapours on warming. Red- oily liquid	$Cr_2O_7^{2-}$ and Cl -(orange); CrO_4^{2-} and Cl -(yellow) present. CrO_4^{2-} and Cl_2 formed, HCl

droplets condensing and running back. Heavy fuming in air	produced.
✓ Black solid precipitated, colourless pungent gas produced heavily in air. Violet vapour on heating, litmus paper bleached	I^- Present, HI produced. Purple vapour is iodine (I_2)
✓ Blue solid turns white	Cu ²⁺ present, formation of an hydrous sulphate from a hydrated salt
✓ Red or pink solid turns blue	Co ²⁺ present, formation of an hydrous sulphate from hydrated salts
✓ Dark brown solid yields a colourless gas that relights a glowing splint and leaves a white residue on heating	<i>PbO</i> ₂ <i>present. Pb</i> ⁴⁺ <i>converted to</i> Pb ²⁺ (PbSO ₄), O ₂ produced.
✓ Black solid on heating liberates a colourless gas that re-lights a glowing splint. White solid left	MnO_2 present MnO_2 changed to $MnSO_4$ $MnO_2(s) + 2H_2SO_4(aq) \rightarrow MnSO_4(aq) + O_2(g) + 2H_2O(l)$
✓ Orange-red solid yields a colourless odourless gas that re-lit a glowing splint	Pb ₃ O ₄ present. Pb ₃ O ₄ reduced to PbSO ₄

9. REACTION WITH SODIUM CARBONATE SOLUTION.

TEST: add Na_2CO_3 solution drop wise to the solution, observe any change, then add reagent in excess. Warm and then boil with care

Observation	Deduction
 White ppt, no other observable 	Pb ²⁺ ,Zn ²⁺ ,Ba ²⁺ ,Ca ²⁺ ,Mg ²⁺ present. PbCO ₃ ,
change	ZnCO ₃ , CaCO ₃ ,BaCO ₃ ,and MgCO ₃
 White ppt, accompanied by 	Very acidic solutions of Al ³⁺ , Sn ²⁺ present.
effervescence of a colourless gas	Al(OH) ₃ pptd. Carbonates unstable hence
turns litmus red and lime water	CO ₂ produced.
milky.	
 White ppt (observe carefully), 	Mn ²⁺ present. MnCO ₃ ppt aerial oxidation to
rapidly turning pale brown.	Mn ³⁺ compound.
 Light blue ppt, darkening on heating 	Cu ²⁺ , CuCO ₃ ppt, decomposition to black
and turning black.	CuO.
Light green ppt	Ni ²⁺ present, NiCO ₃ ppt.
 Mud green ppt. (with Fe²⁺ the ppt 	Fe ²⁺ ,Cr ³⁺ present. FeCO ₃ and Cr ₂ (CO ₃) ₃ pptd,
may go through an initial white stage	effervescence may occur with Cr3+
then darkness at the surface on	

. 11)	
standing)	
 Red brown ppt accompanied by effervescence of a colourless gas, turns blue litmus red and lime water milky. 	Acidic solution of Fe^{3+} present, $Fe(OH)_3$ pptd. $Fe_2(CO_3)_3$, unstable hence CO_2 evolved.
 Mauve ppt turning blue on heating 	Co ²⁺ present, CoCO ₃ pptd.
Colourless, pungent gas turns red litmus blue evolved. Fumes with conc. HCl	NH_4^+ present. NH_3 evolved, Na_2CO_3 hydrolyses to give alkaline solution. $CO_3^{2-}+ 2H_2O \longrightarrow H_2CO_3 + 2OH^ NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$
Effervescence of a colourless gas evolved, turning lime water milky. No other observable change.	Acid, or acid salt of strong acid e.g. HSO_4^- Present, CO_2 evolved
 Colour of solution changes from orange to yellow 	Cr ₂ O ₇ ²⁻ present.Cr ₂ O ₇ ²⁻ presence of OH- Changes to CrO ₄ ²⁻

10. REACTIONS WITH SILVER NITRATE SOLUTION

Observation	Deduction
White curdy ppt turning buff (flesh coloured) on heating.	CO ₃ ²⁻ or HCO ₃ -Present, Ag ₂ CO ₃ pptd.
White ppt turning purplish –grey on standing in bright light, insoluble in dil. HNO ₃ but soluble in NH ₃ (aq)	Cl ⁻ probably present. AgCl pptd. AgCl forms soluble Ag(NH ₃) ₂ +ion
Pale cream ppt (sometimes almost white ppt),insoluble in dil. HNO ₃ but soluble in conc. NH ₃	Br present AgBr ppt
Deep cream ppt (sometimes almost yellow) insoluble in both dil.HNO ₃ and conc. NH ₃	Agl pptd I ⁻ Present
 Red ppt from yellow solution 	CrO ₄ ²⁻ present Ag ₂ CrO ₄ pptd
 Red ppt from orange solution 	$\operatorname{Cr}_2 O_7^{2-} \operatorname{Ag}_2 \operatorname{Cr} O_4$ pptd.
❖ Black ppt	S ² -present, Ag ₂ S pptd
Sliver mirror(sometimes brownish ppt) observed on warming	Ag pptd, Fe^{2+} probably present i.e. $Fe^{2+} + Ag^+ \rightarrow Fe^{3+} + Ag(s)$.

11. REACTIONS WITH LEAD (II) NITRATE SOLUTION

Test:Add lead (II) acetate or nitrate drop wise, then heat gently cool afterwards.

Observation	Deduction
 White ppt, partially or completely soluble on heating, re-precipitating 	Cl- present
on cooling white crystals	

<u>o</u>	White ppt insoluble on heating; insoluble in dil HNO ₃	SO ₄ ²⁻ Present
<u>o</u>	White ppt insoluble on heating; ppt dissolves in dil.HNO ₃ with effervescence of a colourless, odourless gas turns blue litmus red and lime water	CO ₃ ²⁻ Present ,PbCO ₃ pptd CO ₂ evolved
<u>o</u>	Yellow ppt, no visible color changes on heating. If ppt is small, it may dissolve on heating then reprecipitates on cooling.	I-present Pbl ₂ pptd
<u>o</u>	Yellow ppt, turning orange on heating	${\rm Cr}O_4^{2-}$ or ${\rm Cr}_2{\rm O}_7{}^2$ -present, PbCrO ₄ pptd.
0	No apparent/ visible colour change	NO ₃ or CH ₃ COO present

12. REACTION WITH POTASSIUM IODIDE SOLUTION

Observation	Deduction
Yellow ppt stained white (or cream	Cu ²⁺ present, CuI pptd. I ₂ liberated
ppt) in a brown (or red-brown)	$2Cu^{2+}(aq)+4l^{-}(aq)\rightarrow Cu_{2}I_{2}(s)+I_{2}(aq)$
solution insoluble in excess reagent	
Yellow ppt insoluble in excess	Pb ²⁺ present
reagent. (if the amount of ppt is much	Pbl ₂ pptd
and concentration of I is low, then	
ppt will not dissolve in excess KI)	Pb ² +present,Pbl ₂ pptd
Yellow ppt soluble in excess KI	(PbI ₄) ²⁻ ,solublecomplex formed
forming a colourless solution. (The	i.e.Pbl ₂ (s)+ 2I ⁻ (aq) \rightarrow Pb I_4^{2-} (aq)
ppt dissolves in conc. of I is high and	
quantity of ppt is little)	
Solution turns red/brown	Fe ³⁺ , I ₂ liberated

NOTE:

- i. Some oxidizing agents such as CrO_4^{2-} or $Cr_2O_7^{2-}IO_3$ -can only liberate I_2 from KI in the presence of an acid. But Cu^{2+} and Fe^{3+} may not require an acid since the aqueous solutions are acidic
- ii. Iodine may be liberated as a pale yellow or dark brown solution (if conc. is low) or as a black ppt) if conc. is high.
- iii. Iodine liberated may be detected by:
 - Boiling the solution or suspension, forming purple vapor of I₂
 - Adding starch, forming deep blue colour
 - Adding CCI₄ and shaking, forming pink or purple lower layer

13. REACTIONS WITH POTASSIUM CHROMATE AND POTASSIUM DICHROMATE

Test: Add few drops of the reagent to the test solution; observe any changes taking place, the warm

Observation	Deduction
 Pale yellow ppt, formed insoluble in NaOH(aq) 	Ba ²⁺ present, BaCrO ₄ pptd
 Yellow ppt, turns orange on heating, yellow ppt dissolves in NaOH(aq) forming a colourless solution 	Pb ²⁺ present, PbCrO ₄ pptd.PbCrO ₄ dissolves to form, Pb(OH) ₄ ²⁻ ion
• Yellow (CrO_4^{2-}) solution turns greenblue or orange $(Cr_2O_7^{2-})$ solution turns green	Cr ⁶⁺ reduced to Cr ³⁺ reducing agent present in acid solution e.g. Sn ²⁺ also decolourizes MnO ₄ -/H ⁺ solution.
Note: If I ⁻ present, I ₂ is liberated in the presence of H ⁺ , dark brown colour of I ₂ will mask the green Cr ³⁺ , solid I ₂ may be pptd.	

14.REACTIONS WITH HYDROGEN SULPHIDE GAS OR SODIUM SULPHIDE SOLUTION

Test: Add H₂S through a little of the test solution slowly, then moderately or add sodium sulphide solution to the test solution drop wise then in excess.

Observation	Deduction
a) A colourless solution giving dark	Pb ²⁺ present from neutral acidified or
brown-black ppt	alkaline solution. PbS pptd.
b) A colourless solution giving dark	Sn ²⁺ present, from neutral acidified or
brown ppt	alkaline solution.
c) A colourless solution giving white	Zn ²⁺ present, from only neutral acidified or
ppt (solution buffered with	alkaline solution not acidic. ZnS pptd, Zn ²⁺
NH ₄ Cl/NH ₃)	present as $Zn(NH_3)_4^{2+}$
d) A blue or green solution giving black	Cu ²⁺ , CuS pptd from neutral, acidified or
ppt	alkaline solution of Cu ²⁺
e) A yellow solution giving black ppt.	Fe ³⁺ from neutral, alkaline or acidified
buffered solution with NH ₄ Cl/NH ₃)	Fe ³⁺ ions
	H ₂ S oxidized to S and Fe ³⁺ reduced to Fe ²⁺
f) A blue solution giving black ppt.	Co ²⁺ present. CoS pptd.
buffered solution with NH ₄ Cl/NH ₃)	Co present as Co(NH ₃) ₄ ²⁺
g) Yellow solution giving muddy	CrO_4^{2-} , H_2S oxidized to S and Cr^{6+} reduced to
suspension (from neutral test	Cr ³⁺

solution)	
h) Orange solution giving muddy green suspension (from neutral test solution)	$Cr_2O_7^{2-}$, H_2S oxidized to S and Cr^{6+} reduced to Cr^{3+} .

15. CONFIRMATORY TESTS FOR CATIONS.

ION	TEST	OBSERVATION
Pb ²⁺	Heat suspected solid	Turns brown when hot and yellow when cold
	Add potassium iodide solution	• A yellow precipitate $Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$ A yellow ppt
	Add dilute hydrochloric acid solution	 A white precipitate which dissolves on warming to give a colourless solution and reforms on cooling Pb²⁺(aq) + 2Cl⁻(aq) → PbCl₂(s) A white ppt
	Add dilute sulphuric acid solution	• A white ppt of PbSO ₄ is formed
	Add potassium chromate solution	 A yellow precipitate of lead chromate is formed Pb²⁺(aq) + CrO₄²⁻(aq) → PbCrO₄(s)
Cu ²⁺	Heat suspected solid	Turns black on heating

	 Add sodium hydroxide solution drop-wise until in excess 	A pale blue precipitate insoluble in excess. The ppt turns black on heating Ionic equation:
		$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$ A pale blue ppt
	Add ammonia solution drop-wise until in excess	A pale blue precipitate soluble in excess to form a deep blue solution Ionic equation:
		$Cu^{2+}(aq) + 20H^{-}(aq) \rightarrow Cu(0H)_{2}(s)$ A pale blue ppt
		$Cu(OH)_2(s) + 4NH_3(aq) \rightarrow Cu(NH_3)_4^{2+}(aq) + 2OH^-(aq)$ Tetra ammine copper(II) ions Deep blue solution
	Add potassium or sodium iodide solution	• A white precipitate is formed in a brown solution $2\mathcal{C}u^{2+}(aq) + 4\mathbf{I}^{-}(aq) \rightarrow \mathbf{C}\mathbf{u}_{2}\mathbf{I}_{2}(s) + \mathbf{I}_{2}(aq)$
	Add potassium thiocyanate solution	Reddish- brown precipitate
	 Add potassium hexacyanoferrate (II) solution (K₄F_e(CN)₆) 	• A reddish- brown gelatinous ppt of $Cu_2F_e(CN)_6$ is formed
Zn^{2+}	Heat suspected solid	Turns yellow when hot and white when cold

 Add sodium hydroxide solution drop-wise until in excess 	White precipitate soluble in excess to form a colourless solution Ionic equation:
	$Zn^{2+}(aq) + 20H^{-}(aq) \rightarrow Zn(0H)_{2}(s)$ White ppt
	$Zn(OH)_2(s) + 2OH^-(aq) \rightarrow Zn(OH)_4^{2-}(aq)$ Zincate ion (colourless)
 Add ammonia solution drop-wise until in excess 	 White precipitate soluble in excess to form a colourless solution
	Ionic equation:
	$Zn^{2+}(aq) + 20H^{-}(aq) \rightarrow Zn(0H)_{2}(s)$ A white ppt
	$Zn(OH)_2(s) + 4NH_3(aq) \rightarrow Zn(NH_3)_4^{2+}(aq) + 2OH^-(aq)$ Tetra ammine Zinc(II) ions Colourless solution
 Add solid NH4Cl followed by disodium hydrogen phosphate, then excess ammonia 	• White ppt of <i>ZnNH₄PO₄</i> soluble in excess ammonia
 Add 1 or 2 drops of NH₃ (aq) (avoid excess). Decant, heat strongly till no further change 	 White ppt of Zn(OH)₂ gives ZnO, which is yellow (hot) and white (cold)
 Add potassium Ferro- cyanide solution 	A white precipitate soluble in alkalis
 Add NH₄Cl,then NH₃ (aq) then pass through H₂S or add Na₂S 	White (dirty white) ppt of <i>ZnS</i> formed

A777+		
NH ₄ ⁺	 Add dilute sodium hydroxide and warm gently, test with a damp red and blue litmus paper Heat the suspected solid 	 A colourless gas with a pungent chocking smell that turns damp red litmus paper blue and forms dense white fumes with conc. <i>HCl</i> was produced. A white sublimate formed at the coolor parts of the test tube.
Fe ²⁺	Add potassium hexacyanoferrate(II) solution	 cooler parts of the test-tube A white precipitate turns to blue ppt
	Add NaOH(aq) till in excess, leave to stand	 Muddy green- gelatinous ppt of Fe(OH)₂turns brown at the surface due to formation of Fe(OH)₃
	Add potassium hexacyanoferrate(III) solution	 A dark or deep blue ppt of Fe.Fe(CN)₆ is formed
	• Add 1cm ³ of <i>H</i> ₂ <i>O</i> ₂ , warm the add 3 drops of dil. <i>HCl</i>	• Yellow/ brown solution is formed. $H_2O_2 + 2H^+ + 2Fe^{2+} \rightarrow 2H_2O + 2Fe^{3+}$
	Add dimethylglyoxime solution	Light red solution
Fe ³⁺	 Add potassium hexacyanoferrate(II) solution 	A deep blue ppt is formed
	Add potassium hexacyanoferrate(III) solution	Dark solution is formed
	 Add potassium or ammonium thiocyanate,NH4SCN (crystals or solution) 	 Deep red solution (Fe(SCN)₆³⁻is formed
	Add dimethylglyoxime solution	A red solution
	• Add a few drops of <i>H</i> ₂ <i>O</i> ₂ , followed by dil. <i>NaOH</i>	 Yellow or brown solution turns to green solution. Rapid effervescence of a gas that re-lit a glowing splint. H₂O₂ + 2OH⁻ + 2Fe³⁺ → 2H₂O + 2Fe²⁺ + O₂

<i>Ca</i> ²⁺	Flame test	Burns with a characteristic brick- red flame
	 Add ammonium oxalate(or ethandioate),(NH₄)₂C₂O₄ followed by ethanoic acid and warm 	White ppt of CaC ₂ O ₄ formed which does not dissolve on warming with ethanoic acid
	Add potassium chromate solution	No precipitate formed
	 Add dil. H₂SO₄ or Na₂SO₄solution. 	White ppt of CaSO ₄ formed
	 Add ammonium chloride followed by potassium Ferro cyanide 	White ppt is formed
	 Add (NH₄)₂CO₃ in the presence of NH₄Cl 	• White ppt of <i>CaCO</i> ₃
Ba ²⁺	Add potassium chromate solution	• A pale yellow ppt of <i>BaCrO</i> ₄
	 Flame test: treat a little solution containing <i>Ba</i>²⁺ ions with one drop of conc. <i>HCl</i>, moisten the wire with the mixture, hold it in the edge of non-luminous flame 	Burns with green(apple flame)
	• Add saturated CaSO ₄ solution	• White ppt of <i>BaSO</i> ₄
	 Add dil. H₂SO₄ or Na₂SO₄solution. 	White ppt of BaSO₄ formed•
	 Add ammonium oxalate(or ethandioate),(NH₄)₂C₂O₄ followed by ethanoic acid and warm 	 White ppt of BaC₂O₄ formed which dissolves on warming with ethanoic acid
	 Add (NH₄)₂CO₃ in the presence of NH₄Cl 	● White ppt of CaCO ₃
Al^{3+}	 Add 1 or 2 drops of litmus solution, followed by dil. HCl, then finally add NH₃(aq) until just alkaline 	Blue lake formed

	A 1 1 1 1 1 1	A 1
	 Add disodium hydrogen phosphate solution 	 A white precipitate is formed soluble in mineral acids
	 Add sodium carbonate solution 	 A white ppt of Aluminium hydroxide soluble in excess
	 Add ammonia solution followed by a few drops of Alzarine solution 	Pink solution
	• To 3 cm³ of solution of Al³+ ions add 1 drop of cobalt (II) nitrate solution. Moisten a piece of filter paper with this mixture and heat the paper strongly by placing it on heated wire gauze or holding it directly on the flame	Bright blue ash of cobalt(II) aluminate is observed
Mg ²⁺	• Add a few crystals of NH ₄ Cl followed by 2-3 drops of disodium hydrogen phosphate (Na ₂ HPO ₄) then finally add NH ₃ (aq) drop wise till in excess	• White crystalline ppt, insoluble in NH3(aq).
	Add a few drops of Magneson followed by little sodium hydroxide solution	A blue ppt is formed
Ni ²⁺	Add ammonia solution drop wise until in excess	 Pale green ppt (use conc. solution) dissolves in excess giving a pale blue solution of Ni(NH₃)₄²⁺
	 Add ammonia solution until the solution is just alkaline. Then add 2-3 drops of dimethyl-glyoxime solution 	A pale green ppt forms red ppt of nickel(II)dimethyl-gyloxime complex
	 Add potassium hexacyanoferrate(II) solution 	• A green precipitate soluble in ammonia solution $2Ni^{2+} + Fe(CN)_6^{4-} \rightarrow Ni. Fe(CN)_6$
	Add potassium hexacyanoferrate(III) solution	• A brown precipitate is formed $3Ni^{2+} + 2Ni(CN)_6^{3-} \rightarrow Ni_3(Fe(CN)_6)_2$

	Add 2-napthol	Brown precipitate soluble in dilute hydrochloric acid
	Add potassium cyanide solution	 A yellowish- green ppt of Ni(CN)₂ which dissolves in excess forming a dark yellow solution of K₂Ni(CN)₄
<i>Mn</i> ²⁺	 Add a few drops of conc./ dil. HNO₃followed by a little solid sodium bismuthate(V), BiO₃ 	• Violet or purple colouration/ solution of MnO_4^- formed, may settle down as a dark brown ppt of MnO_2 $5BiO_3^- + 2Mn^{2+} + 14H^+ \rightarrow 2MnO_4^- +$ $5Bi^{3+} + 7H_2O$
	 Add lead (IV) oxide followed by conc. HNO₃and boil. 	• Colourless solution turns purple $5PbO_2 + 2Mn^{2+} + 4H^+ \rightarrow 2MnO_4^- + 5Pb^{2+} + 2H_2O$
	 Fuse solid containing Mn²⁺ with a large excess fusion mixture(Na₂ CO₃ /KNO₃) 	• Green mass of manganate(VI) MnO_4^{2-} is observed
	• Add 1 cm ³ of <i>H</i> ₂ <i>O</i> ₂ then add 3 drops of dil. <i>NaOH</i> .	Dark brown ppt MnO ₂ formed. Rapid effervescence of a colourless gas that re-lit a glowing splint. Much heat evolved
	 Add NH₄Cl/NH₃(aq) till the solution is alkaline then pass H₂S or add Na₂S 	Dirty white or pink ppt of MnS observed
Co ²⁺	 Add 2-3 drops of ammonium thiocyanate (NH₄SCN) solution. Add some pentanol (amyl alcohol) or ether, shake gently. 	 Initial blue(pinkish- purple) solution of cobalt(II)thiocyanic acid, H₂Co(SCN) is observed, separates on shaking with amyl alcohol to form upper blue layer(in alcohol layer)
	 Add potassium cyanide solution 	• Reddish brown precipitate soluble in excess $Co^{2+} + 2CN^{-} \rightarrow Co(CN)_{2}$ $Co(CN)_{2} + 4CN^{-} \rightarrow Co(CN)_{4}^{2-}$
	 Bubble H₂S gas followed by dil. HCl 	• A black ppt insoluble in acid $Co^{2+} + S^{2-} \rightarrow CoS$

	 Add Conc. HCl followed by water Add potassium thiocyanate solution 	 Blue colour is formed which turns to pink on addition of water A blue solution is formed
Cr ³⁺	 Add NaOH(aq) drop wise till in excess followed by a few drops of H₂O₂then heat to oxidize the chromite to yellow CrO₄²⁻ then add: Pentanol(amyl alcohol), then dil. H₂SO₄, shake gently Lead(II) nitrate to the yellow solution (CrO₄²⁻) 	 A green ppt soluble in excess forming a green solution. A yellow solution of CrO₄²⁻ is formed 2Cr(OH)₃ + 3H₂O₂ + 4OH⁻ → 2CrO₄²⁻ + 8H₂O Blue colouration that concentrates in alcohol layer Yellow ppt of PbCrO₄ formed confirms Cr³⁺
	 Fuse solid with large excess of fusion mixture(Na₂CO₃/ KNO₃) 	 Yellow solid of chromate (CrO₄²⁻) obtained
Sn^{2+}	• Add <i>Na₂S</i> solution	Brown ppt of <i>SnS</i>
	 Add potassium manganate(VII) solution 	Purple color of MnO ₄ ⁻ turns colourless
	 Add potassium chromate (VI) solution 	• Yellow colour of CrO_4^{2-} turns green-blue due to formation of Cr^{3+}
	Add iron(III) chloride solution	• Yellow- brown, Fe^{3+} solution turns to pale green colour of Fe^{2+}

16.DETECTION OF ANIONS

Dissolve a little of the substance in cold water or to a solid substance, then carry out the identification test for the anion

ION	TEST	OBSERVATION
CO ₃ ²⁻ or HCO ₃ ⁻	• Heat the solid except Na_2C0_3 and K_2C0_3	Effervescence of a colourless gas which turns lime water milky and damp blue litmus red
	To the solid or solution add dilute acid	 Effervescence of a colourless gas (CO₂ gas)which turns lime water milky and damp blue litmus red
	 Differentiating between CO₃²⁻ and HCO₃⁻. All HCO₃⁻ are soluble in water and only Na⁺, K⁺ and NH₄⁺ bicarbonates are available in solid form. 	
	a) Add 1-2 drops of MgSO _{4(aq)}	No ppt, formation of soluble $Mg(HCO_3)_2$ confirms HCO_3^- .
	b) Add lead(II)acetate/nitrate, heat then add dil. HNO3	White ppt of <i>PbCO</i> ₃ insoluble on heating but soluble in dil. <i>HNO</i> ₃ with effervescence of a colorless gas that turns damp blue litmus red and lime water milky
SO ₄ ²⁻	 Add dil. HCl followed by a few drops of BaCl₂(aq) 	• White ppt of <i>BaSO</i> ₄
	 Add dil. HNO₃ followed by a few drops of Ba(NO₃)₂(aq) 	• White ppt of BaSO ₄
	 Differentiating between SO₄² and HSO₄ (all HSO₄ are soluble in water and only Na⁺, K⁺ and NH₄⁺ hydrogen sulphates are ordinarily available. 	
	Heat the solid gently	 Dense white chocking fumes, turn blue litmus red and Ba(NO₃)₂(aq) milky. If SO₃ is readily evolved then HSO₄ is confirmed
		• If SO_3 fumes are evolved only on strong heating then SO_4^{2-} is confirmed

	• Add solid Na ₂ CO ₃ powder	 Vigorous effervescence of CO₂ confirms HSO₄⁻ If there is slight or no
		effervescence at all, then SO_4^{2-} is confirmed.
SO ₃ ²⁻	• Add dil. <i>HCl</i> and warm	 No reaction in cold, bubbles of a colourless gas produced on warming. The colourless chocking gas (SO₂) produced turns orange K₂Cr₂O₇paper green and damp blue litmus red and bleaches it.
	 Add iodine solution 	 The brown color is immediately decolourized
	 Add FeCl_{3(aq)}acidify, warm and add NaOH_(aq) 	 A dark red- brown solution observed becomes almost colourless when hot. Green ppt formed with NaOH (aq). Fe³⁺reduced to Fe²⁺
	 Add 2-3 drops of barium nitrate solution followed by dilute nitric acid 	White ppt soluble in dilute nitric acid
S ₂ O ₃ ²⁻	• Add dil. <i>HCl</i> and warm	 White (or cream) ppt of sulphur with evolution of bubbles of a colourless gas produced on warming. The colourless chocking gas (SO₂) produced turns orange K₂Cr₂O₇ paper green and damp blue litmus red.
	• Add $I_2(aq)$ in KI solution	• The brown color of I_2 was immediately decolorized $I_2 + {}_2S_2O_3^{2-} \rightarrow {}_2I^- + S_4O_6^{2-}$
	Add silver nitrate solution	Yellow ppt that turns black
	• Add FeCl _{3(aq)} acidify, warm and add NaOH _(aq)	• Dark purple solution clears when hot, becomes cloudy. Green ppt of $Fe(OH)_2$ with $NaOH(aq)_2Fe^{3+} + {}_2S_2O_3^{2-} \rightarrow {}_2Fe^{2+} + S_4O_6^{2-}$

NO ₃	 To a solid or solution add a few pieces of copper turnings, then about 2cm³ of conc. H₂SO₄. Heat gently NB: NO₂ gives immediate effervescence before warming 	• Brown fumes of gas and a blue solution(Cu^{2+ions}) on heating confirms NO_3^-
	To a solid or solution add a few drops of NaOH(aq) then a little of zinc or aluminum powder or Devarda's alloy and heat the mixture	 Evolution of a colourless pungent chocking gas, turns red litmus blue and fumes heavily with conc. HCl (NH₃ gas produced) confirms NO₃
	 Brown ring test: To the test solution add an equal volume of cold freshly prepared FeSO_{4(aq)} solution followed by drops of conc. H₂SO₄. NB: I⁻, Br⁻, NO₂ also form brown rings. If Pb²⁺, Cu²⁺,Ba²⁺white ppt is formed but the brown ring is un affected 	• Formation of a brown ring Fe(NO) ²⁺ at the interface or aqueous layer- acid junction
NO ₂	• To solid or conc. solution add dil. <i>HCl</i> or <i>H</i> ₂ <i>SO</i> ₄	• Immediate effervescence of brown fumes (<i>NO</i> ₂). Pale blue solution formed(i.e <i>HNO</i> ₂ or <i>N</i> ₂ <i>O</i> ₃)
	• Add fresh <i>FeSO</i> _{4(aq)} followed by dil. <i>NaOH</i>	 Mixture turns black, Fe(H₂O)₅(NO)²⁺, then gave a yellow solution(Fe³⁺) that gave red- brown ppt of Fe(OH)₃ confirms NO₂
	• Add <i>KMnO</i> ₄ solution	 Solution becomes colourless or traces of brown ppt (MnO₂) which clear on standing
	• To cold test solution add FeSO _{4(aq)} followed by dil. H ₂ SO ₄	• Dark brown complex ion, Fe(NO) ²⁺ formed
$C_2O_4^{2-}$	• Add 2-3 drops of <i>AgNO</i> ₃ (aq) followed by excess <i>NH</i> ₃ (aq).	• White ppt $(Ag_2 C_2O_4)$ soluble in excess $NH_3(aq)$, forming a colourless complex $Ag(NH_3)_2^+$

	 Add Barium chloride solution followed by dilute hydrochloric acid 	White ppt dissolves without effervescence.
	 Add a few drops of dil. H₂SO₄,heat the mixture to about 70°C then add a few drops of KMnO₄(aq) 	Purple solution turns colourless with bubbles of a colourless gas that turns lime water milky
CrO ₄ ²⁻	• Add dil. H_2SO_4	Colour changes from yellow to orange
$Cr_2 O_7^{2-}$	• Add dil. <i>NaOH</i> solution	Colour changes from orange to yellow
	• Reactions in which CrO_4^{2-} resembles $Cr_2O_7^{2-}$	
	Add lead(II)acetate	Yellow ppt of <i>PbCrO</i> ₄ formed
	Add AgNO3(aq)	• Brick-red ppt of Ag_2CrO_4
	Add pentanol and dil. H ₂ SO ₄	• Blue <i>CrO</i> ₅ formed, more concentrated in the alcohol layer
S ²⁻	 To a test solid or solution add dil. <i>HCl</i>, warm To a test solid or solution add dil. <i>H</i>₂<i>SO</i>₄, warm 	Colourless gas with rotten egg smell, (H_2S) (poisonous) which turns damp blue litmus pink (red) and moist lead acetate paper black (<i>PbS</i>)
CH₃COO ⁻	 To test or solution add dil. H₂SO₄,warm 	• Smell of vinegar from displaced CH ₃ COO-
	 Moisten a little test solid with ethanol then add a little conc. H₂SO₄ and pour into water. Smell 	A sweet fruity smell of an ester formed from a salt of a carboxylic acid
Cl ⁻	 Add 2-3 drops of AgNO₃, then a few drops of dil. HNO₃ 	White ppt of AgCl insoluble in dilute acid but soluble in ammonia solution
	 To a little solid add a few drops of conc. H₂SO₄ and warm 	 Colourless pungent fumes, that turn damp blue litmus red, fumes heavily in air or with a drop of conc. NH₃ i.e HCl produced
	 To a little solid test substance add a little of manganese(IV)oxide followed by a few drops of conc. H₂SO₄ and warm 	Pale green gas (yellow-green) bleaches damp blue litmus paper. Cl ₂

	 To a test solution add 1-2 drops of chlorine water(or slightly acidified NaOCl, sodium hypochlorite),then followed by 2-3 cm³ of CCl₄, shake 	 Colourless(or very pale green) lower layer confirms Cl⁻ ClO⁻ + 2H⁺ + Cl⁻ → H₂O + Cl₂
Br ⁻	 Add 2-3 drops of <i>AgNO</i>₃, then a few drops of dil. <i>HNO</i>₃ Toa little solid add a few drops of conc. <i>H</i>₂<i>SO</i>₄ and 	 Pale cream(pale yellow) ppt of AgBr insoluble in dilute acid but soluble in ammonia solution Mixture of colourless pungent fumes of HBr and red-brown
	warm To a test solution add 1-2	pungent, Br ₂ gas condensed to brown liquid produced • Yellow orange lower aqueous
	drops of chlorine water(or slightly acidified <i>NaOCl</i> , sodium hypochlorite),then followed by 2-3 cm ³ of <i>CCl</i> ₄ , <i>shake</i>	layer. Br -oxidized to Br_2 , layer decolorizes on addition to $NaOH(aq)$
	 To a little solid test substance add a little of manganese(IV)oxide followed by a few drops of conc. H₂SO₄ and warm 	 Red-brown pungent vopours bleaches damp litmus paper condenses to brown liquid and forms brown solution with CCl₄, Br₂ produced
I-	• Add 2-3 drops of <i>AgNO</i> ₃ , then a few drops of dil. <i>HNO</i> ₃	Yellow (or cream) ppt of AgI insoluble in both dilute acid and in ammonia solution
	 Toa little solid add a few drops of conc. H₂SO₄ and warm 	 Black ppt of I₂ formed, fuming HI(g) also produced
	• To a test solution add 1-2 drops of chlorine water(or slightly acidified <i>NaOCl</i> , sodium hypochlorite),then followed by 2-3 cm ³ of <i>CCl</i> ₄ , shake	 Violet/ purple pungent vapour slowly bleaches damp litmus and forms blue colouration with starch, I₂ produced
	 To a little solid test substance add a little of manganese(IV)oxide followed by a few drops of conc. H₂SO₄ and warm 	 Pink or purple lower layer confirms I-, I- oxidized to I₂

ORGANIC QUALITATIVE ANALYSIS

Qualitative analysis deals with identification of the nature or the functional groups (reactive centers) present in an organic compound. Functional groups to be analyzed mainly include

- ➤ Hydroxyl (-OH) group; for alcohols and phenols
- Carbonyl group(-C=0), for carbonyl compounds (aldehydes and ketones)
- > Carboxyl group (-COOH) for carboxylic acids
- ➤ Amino group(-NH₂), for amines
- ➤ Others could be; ethers(-0-), alkyl and aryl halides(R-X and Ar-x), esters, amines

PRELIMINARY TESTS

1. APPEARANCE AT 20°C (room temperature)

- A majority of lower aliphatic compounds such as alcohols, aldehydes, ketones, esters, ethers, amines etc are liquids at 20° C
- Most aromatic compounds are solids at room temperature. Some exceptions such as phenylamine, benzaldehyde, benzene, methylbenzene, nitrobenzene, halogenobenzenes, benzyl chloride, phenyl methanol(benzyl alcohol)

NB; There are no gaseous aromatic compounds at 20°C

2. ODOURS/SMELL

Students should familiarize themselves with the following characteristic odours which may be difficult to describe in words

Odour/ smell	Class of compounds
Pleasant, fruity	Esters
Pungent	Lower acid chlorides, acid an hydrides,
	aldehydes
Almond	Benzaldehydes, nitro- compounds
Carbolic	Phenols
Antiseptic	Triiodomethane, halogenated phenols
Odourless	Ionic compounds, high molecular weight
	compounds
Petrol or paraffin	Liquid alkanes

3. COLOURS

A great majority of organic compounds are colourless. Some simple coloured organic compounds include;

- ➤ Azo- dyes i.e. 2,4-dinitrophenylhydrozones are red or orange
- > Triiodomethane, nitro- compounds are yellow
- ➤ Many metallic salts of organic acids are coloured

4. SOLUBILITY OF ORGANIC COMPOUNDS IN WATER

Solubility of organic compounds in water is related to:

- i. The functional group present, functional groups containing more electronegative elements such as oxygen and nitrogen are highly polar and the extent to be soluble in water due to hydrogen bonding occurs
- ii. The size of the hydrocarbon skeleton(the larger the non-polar part of the organic molecule the less soluble it is)

Soluble(lower aliphatic cpds)	Sparingly soluble
Acids	Aromatic compounds
Alcohols	Simple phenols
Aldehydes	Esters
Amines	Ethers
Salts of Na+, K+, NH ₄ +	Halogenoalkanes

Test: To about 0.5g or 1cm³ of organic substance in a test-tube, add 1or 2 drops of distilled water. Observe, and then add about 3cm³ of more distilled water. Note the solubility in cold water. Warm the mixture and note any change.

Observation	Deduction
a) Substance readily soluble. No	Alkaline solution,
hydrogen chloride gas produced	Amine present
 Red litmus turns blue 	$RNH_2+H_2O \leftrightarrow RNH_3^+ +OH^-$
	Salt of a weak acid and strong base
	hydrolyzed present
	$CH_3COONa + H_2O \longleftrightarrow CH_3COOH + NaOH$
Blue litmus turns red	Carboxylic or sulphonic acid present,
2140 1141145 041 115 104	Phenol present,
	Salt of a strong acid and a weak base
	present which is hydrolyzed present
	$RNH_3^+ + H_2O \longleftrightarrow H_3O^+ + RNH_2$

Neutral to litmus	Neutral substance present e.g. alcohol, aldehydes and ketones, esters, amides
b) Substance forms a separate layer (observe carefully) soluble on standing, shaking or on gentle warming to give an acidic solution. No <i>HCl</i> gas produced	Phenol present, acid anhydride present Acid formed from hydrolysis
 c) Hydrogen chloride gas produced, the substance dissolves giving an acidic solution Rapidly or vigorously to give a colourless solution 	Acid(acyl) chloride present, which is hydrolyzed • Lower aliphatic acid chloride present yields water soluble acid.(these substances fume in air and are extremely pungent)
 Gradually on boiling to yield a white ppt (immediately or on cooling) 	 Aromatic acid present, yield an acid which is sparingly soluble in cold water

5. COMBUSTION / EFFECT OF HEAT

TEST: Burn a small amount of the substance on a crucible lid

Observation	Deduction
 Substance burns readily with a blue, 	Saturated aliphatic compound with low C: H
non-sooty, non-luminous flame	ratio possibly not more than 4 or 5 carbon
	atoms per molecule
 Substance burns readily with a 	Unsaturated aliphatic compound
yellow, slightly sooty, luminous flame	
 Substance burns readily with a 	High C: H ratio probably aromatic or highly
yellow, heavily sooty (smoky),	un saturated aliphatic or highly aliphatic
luminous flame. Black solid (carbon)	
deposited on cold parts of spatula or	
glass rod held at the top of the flame	

N.B; (EFFECT OF HEAT)

If a substance is in a solid form, put it in a dry glass test tube and heat first gently, then more strongly. Smell any possible gaseous products with care.

Observation	Deduction
Substance melts into a solution (in its own water of crystallization). CO and CO ₂ evolved with some charring. CO burns in tube (delivery tube) with quite blue flame if ignited. A colourless condensate (water) is observed.	Ethanedioc (oxalic) acid, or ethanedioate (oxalate) present (COOH) 2 → CO+ CO2 + H2O.
H ₂ and CO evolved in two stage reaction. H ₂ burns if ignited, on strong heating CO is evolved.	Methanoate (formate) present 2H COONa → (COONa) ₂ + H ₂ (COONa) ₂ → Na ₂ CO3 + CO
 Ketone evolved (characteristics odour), vapour burns with aluminous flame if ignited 	Metal salt of a carboxylic acid 2RCOONa → Na ₂ CO ₃ + RCOR
Vapour non-flammable	Highly halogenated compounds e.g. CCl ₄ CHCl ₃
Ammonia evolved (smell), sublimation occurs	Ammonium salt present or odour of acid detected

6. REACTION WITH SODIUM HYDROXIDE SOLUTION

TEST: To about 0.5g or 1cm³ of the substance in a test-tube, add about 5cm³ of 2M NaOH solution drop wise, shaking after each addition. Observe and note any gases produced. Warm and then boil. Test the gases or vapours evolved with moist red litmus paper

Observation	Deduction
1) Colourless original substance yields a	Aliphatic aldehyde present(not methanol);
yellow brown resin, which on boiling,	polymerization occurs
precipitates with unpleasant smell	
2) Substance dissolves	Substance is acidic. Carboxylic acid or
 a. Readily (though sparingly 	phenol present. Neutralization reaction
soluble in water) to give a	occurs
colourless solution, no gas or	$RCOOH + OH^- \longrightarrow RCOO^- + H_2O$
vapour formed	

b. Slowly on boiling	 Hydrolysis to soluble products Benzaldehyde and other aromatic aldehydes undergo disproportionation reaction i.e. 2C₆H₅CHO+ OH[−] → C₆H₅COO[−] + C₆H₅CH₂OH Esters and acid anhydrides also undergo hydrolysis
 3) Strongly alkaline gas produced (red litmus turns blue) in cold or gentle warming NH₃ gas produced, gas does not burn 	 Displacement of a volatile weak base, NH₄⁺ salt present
Amine evolved, fishy ammoniacal odour, vapour burns	• Aliphatic amine salt present $RNH_3^+ + OH^- \longrightarrow RNH_2 + H_2O$
4) Yellow original substance dissolves to give an orange solution	A nitro phenol

7. REACTION WITH SODIUM CARBONATE SOLUTION

TEST: To about 0.5g or 1cm³ of the substance in a test- tube, add about 5cm³ of 2M Na_2CO_3 solution drop wise, Observe carefully, then warm gently and finally boil. Test for carbon dioxide using lime water, shaking after each addition. Observe and note any other gases produced.

Obse	rvation	Deduction
•	Yellow brown resin precipitated on	Aliphatic aldehydes present (but not
	boiling; unpleasant odour.	methanal), polymerization reaction occurs.
•	Substance dissolves without	Substance neutral or less acidic than
	effervescence, no other apparent / observable change.	carbonic acid present e.g. phenol, alcohols
•	Effervescence	Substance is more strongly acidic than
i.	CO ₂ evolved, no other gas or vapour	carbonic acid, i.e.
		$CO_3^{2-} + 2H^+ \longrightarrow CO_2 + H_2O$
		Substances possibly present are;
		Carboxylic acid
		 Substituted phenol e.g. nitro phenols
		(these finally give a yellow solution
		Sulphonic acid
ii.	CO ₂ and amine vapour evolved, fishy	Amine salt present, amine is volatile. Acid is
	ammoniacal odour, turns moist red	strong. The amine salt solution is acidic by
	litmus blue.	hydrolysis. $RHH_3^+ \longleftrightarrow RNH_2+H^+$

 CO₂ evolved and an oil separates 	Amine salt present, amine is liquid at room
	temperature and sparingly soluble in water;
	parent acid is strong e.g. C ₆ H ₅ NH ₃ ⁺ Cl ⁻

Note: Na_2CO_3 solution largely behaves like NaOH solution; due to hydrolysis of the CO_3^{2-} *i.e*

$$CO_3^{2-} + H_2O \longrightarrow HCO_3^- + OH^-$$

8. REACTION WITH DILUTE HYDROCHLORIC ACID ORSULPHURIC ACID

Test: to a little of the substance in a test tube, add 5cm³ of the dilute acid. Warm gently and finally boil.

Observation	Deduction
 Substance dissolves readily in cold, no gas or vapour formed (though sparingly soluble in water. 	Substance is basic, amine present; $RNH_2 + H^+ \longrightarrow RNH_3^+$ $R_2NH + H^+ \longrightarrow R_2NH_2^+$ $R_3N + H^+ \longrightarrow R_3NH^+$
NB. Both aromatic and aliphatic amines dissolve exothermically, forming dense white fumes and a clear solution with HCl	

9. REACTION WITH CONCENTRATED SULPHURIC ACID

Precaution! Test in this case should be performed with great care since conc. H₂SO₄ is potentially dangerous. A test-tube holder **must** be used, allow the test tube to cool completely before disposing the contents in to a sink of running water.

Test: Carefully add 1 or 2 drops of the acid to about 0.2g or 1 cm³ of the test substance. Add more (1 cm³) acid, observe carefully in cold the warm gently and observe again. Do not over heat (because chocking white fumes may be observed)

Observation	Deduction
 Effervescence, cold or on gentle warming. Little or no blackening CO produced (no CO₂), burns with blue flame on ignition. 	Methanoic (formic acid) acid or methanoate (formate) present. Dehydration occurs i.e. $HCOOH \longrightarrow CO+H_2O$
> CO and CO ₂ produced	Ethanedioc(oxalic) acid or its salt present, Dehydration $(COOH)_2 \longrightarrow CO + CO_2 + H_2O$

Mixture in the tube solidifies, highly exothermic reaction	Amine present, salt formed i.e. $RNH_2 + H_2SO_4 \longrightarrow RNH_3^+ + HSO_4^-$
Some blackening on warming, no effervescence	Substance present are possibly Phenol Phenolic acid e.g. 2- hydroxyl benzoic acid, naphthalene -1-ol or salts
 Liquid substance slowly dissolves; exothermic reaction, no other visible change. 	An alkene probably present. Addition reaction occurs e.g. $RCH=CHR+H_2SO_4 \longrightarrow RCH_2CH(SO_3OH)R$

10. REACTION WITH BROMINE WATER (Br_2/CCl_4), SATURATED AQUEOUS SOLUTION OF BROMINE

TEST: To 0.5g or 1 cm³ of the test substance, drop wise add bromine water, shake after each addition. If decolourization (or partial decolorization or disappearance of brown colour occurs, continue addingbromine water untill in excess.

Observation	Deduction
Immediate decolourization of bromine, heavy white fumes formed	Amine present, white fumes are <i>HBr</i> formed
Products completely miscible with water	Aliphatic amine present or aromatic amine with $-NH_2$ not attached to the benzene ring e.g. $C_6H_5CH_2NH_2$
 Products immiscible with water, white ppt on addition of excess bromine water 	Aromatic amine present e.g. $C_6H_5NH_2 + 3Br_2 \longrightarrow C_6H_2Br_3NH_3 + 3HBr$
Immediate decolourization of bromine and white fumes formed	
Products immiscible with waterWhite ppt with excess bromine water	Phenol present $C_6H_5OH + 3Br_2 \longrightarrow C_6H_2Br_3OH + 3HBr$
Second liquid layer (excess bromine soluble in this layer)	NB; fumes of HBr rarely because of its high solubility in water An alkene or alkyne present; addition reaction
Slow decolourization of bromine water (more rapid if acid is added), no white fumes	Aldehydes or ketone present. (Occasionally, a primary or secondary alcohol). Substitution reaction catalyzed by H^+ occurs e.g $CH_3COCH_3 + Br_2 \longrightarrow CH_2BrCOCH_3 + HBr$

11. REACTION WITH IODINE AND SODIUM HYDROXIDE SOLUTION (IODO FORM REACTION)

TEST: To about 0.5cm³ of the test substance add about 4cm³ of iodine in potassium iodide solution. Then add 2M *NaOH* solution drop wise until the colour of iodine is first discharged, warm and cool.

OBSEVATION	DEDUCTION
Yellow ppt (in cold or gentle heating): antiseptic smell observed	Tri-iodomethane or iodoform, <i>CHI</i> ³ produced. Test substance contains either of the following structural groups
	$CH_3C=0$, $CH_3C-OHe.g.$
	 Ethanal
	 Ethanol
	 Methyl ketone

NB: Similar reactions occur with $Br_{2(aq)}/NaOH_{(aq)}$, $Cl_{2(aq)}/NaOH_{(aq)}$ or NaOCl. But trichloromethane (chlorofoam), $CHCl_3$ are colourless liquids

Test	Observation	Deduction
• To 1 cm ³ of the test	Yellow ppt	Tri-iodomethane, CHI3
solution add 3 cm ³ of		produced <i>CH₃C= Oor</i>
$KI_{(aq)}$, then 10 cm^3 of		<i>CH₃CHOH</i> present.
sodium chlorate(I),		
(sodium		
hypochlorite)		

12. REACTION WITH 2,4-DINITROPHENYLHYDRAZINE (BRADY'S REAGENT)

This reagent is used to test for carbonyl group (-C=0) in aldehydes and ketones

Test	Observation	Deduction
If the test substance is a solid dissolve about 0.5gin methanol. To 1 cm³ of the reagent add several drops of the test substance (or its solution in methanol)	Yellow or yellow- orange ppt	Condensation reaction, aldehydes or ketone present

13. FEHLINGS' SOLUTION

This reagent is used to test for aldehydes and reducing sugars

Test	Observation	Deduction
To1 g or1 cm ³ of the test	Red (or light brown) ppt on	Copper (I) oxide formed. A
substance add about 6 cm ³	boiling. The ppt may start	reducing agent, possibly an
of Fehling's solution, warm	to appear as muddy yellow	aliphatic aldehydes
and boil for 2-3 minutes	colour, then changes to red	present. <i>C₆H₅CHO</i> does not
	on heating	reduce Fehling's solution

14. REACTION WITH 0.1M COPPER (II) SULPHATE SOLUTION

Test	Observation	Deduction
 To about 5cm³ of the test substance add 1cm³ of copper(II) sulphate 	 Bright green colour which first darkens, then gives a yellow- green ppt 	Aromatic amine e.g. phenyl amine present
solution	Blue-green ppt, which darkens and then dissolves to give a deep blue solution	Aliphatic amine e.g. butyl amine present

15. REACTION WITH AMMONIACAL SOLUTION OF SILVER NITRATE (Tollen's reagent)

Preparation

To 5cm³ of 0.1M silver nitrate solution add a few drops, about 4 of 2.0 M sodium hydroxide solution. A grey-brown ppt is formed. Then add 2M ammonia solution drop wise till the ppt just dissolves.

TEST: To the reagent prepared above add about 5cm³ of test substance (liquid or aqueous) and place the test tube in a beaker of hot water for a few minutes (or warm)

Observation	Deduction	
 Grey or dark grey ppt on the inner 	Metallic silver is produced by reducing	
surface of test-tube	agent	
	i. An aldehyde present	
	ii. Methanoic acid (formic acid) or its	
	salts. (reaction is very slow)	
	NB: Redox reaction taking place	
	$Ag(NH_3)_2^+ + e - \longrightarrow Ag + 2NH_3$	

16. REACTION WITH NEUTRAL IRON(III)CHLORIDE

Test	Observation	Deduction
To 1g(or 1 cm ³) of the test substance add neutral	Violet colouration	 Phenol or phenolic derivative present
iron(III)chloride solution until no further change	Brown solution	• HCOO-, CH ₃ COO- present
	Green solution	• $C_2O_4^{2-}$ present

17. REACTION WITH ACIDIFIED POTASSIUM DICHROMATE SOLUTION

Test	Observation	Deduction
To 1cm ³ of sample, add 3-4 drops of acidified dichromate solution and	 Orange solution rapidly turned blue- green 	Primary alcohol present Aldehydes present
heat gently	 Orange solution slowly changed blue- green 	Secondary alcohol, aldehydes or methanoic acid present
	No observable change	Tertiary alcohol or ketone present

18. REACTION WITH ACIDIFIED POTASSIUM MANGANATE (VII) SOLUTION

Test	Observation	Deduction
To 1cm ³ of test sample add 2-3 drops of acidified permanganate and warm/ heat gently	Purple colour turned colourless	Primary and secondary alcohol; aldehydes and methanoic acid present
		Alkenes and alkynes also decolourize permanganate solution

19. LUCAS REAGENT(solution of anhydrous zinc chloride in concentrated hydrochloric acid)

This test is used to distinguish between the classes of alcohols i.e. primary, secondary and tertiary

Test: To about 0.5 cm³ of an alcohol in a test tube, quickly add 2cm³ of Lucas reagent. Close the test-tube with a coke and shake vigorously and allow the mixture to stand in ice-cold water. Observe the mixture over time.

Observation	Deduction	
 No observable change at room 	Primary alcohol present	
temperature		
 Solution turns cloudy after about 5- 	Alkyl chloride formed, secondary alcohol	
minutes (distinct upper layer may	present	
form after 1 hr.)		
 Solution turns cloudy immediately, 	Insoluble alkyl chloride formed. Tertiary	
clears and separates rapidly into	alcohol present	
two layers in about 1-2 minutes		

20. REACTION WITH SODIUM NITRITE IN HYDROCHLORIC ACID,(Nitrous acid or Nitric(III)acid below 5°C

TEST; To 0.5g (or 0.5 cm³) of the test substance in a test-tube, add some water (or dilute *HCl*) and shake to dissolve. Place the tube in an ice- cold water bath. Add 2cm³ of sodium nitrite solution followed by 2cm³ of hydrochloric acid solution added drop wise. If no effervescence, warm gently.

Observation	Deduction
Clear solution with effervescence	Nitrogen produced. Amino (-NH2) group
(bubbling) gas has no effect on lime-	present, not attached to the
water and puts out a lighted splint	aromatic/benzene ring
	Primary aliphatic amine present
	$R-NH_2 + HNO_2 \longrightarrow ROH + N_2 + H_2O$
Yellow oil separates (occasionally, yellow	Secondary amine present, the yellow oily
solution or an emulsion is formed)	liquid is a nitroso-amine
	$R_2NH + HNO_2 \longrightarrow R_2NNO + H_2O$

No observable change in the cold, apart	Primary aromatic amine present, a	
from slight decomposition of nitrous acid	of nitrous acid diazonium salt is produced i.e.	
on warming, a black oil separates and		
phenolic (carbolic) odour produced and	$C_6H_5NH_2 + HNO_2 + H^+ \longrightarrow C_6H_5N_2^+ + 2H_2O$	
nitrogen produced	On warming phenol and N₂ re produced	
	i.e.	
	$C_6H_5N_2^+ + H_2O \longrightarrow C_6H_5OH + N_2 + H^+$	

N.B: Nitroso amines are highly toxic; care should be taken to avoid contamination of the skin

21. AZO- DYE REACTION

TEST: To the test substance dissolve in dilute; add nitrous acid followed by an alkaline solution of 2-napthol or naphthalene-2-ol or using phenol

Test	Observation	Deduction
• Using HNO ₂ and phenol	Bright yellow pptYellow solution	 Primary aromatic amine e.g. C₆H₅NH₂ present. Primary aliphatic amine e.g. butyl amine present
 Using HNO₂ and Naphthalene-2-ol 	Red/orange crystalline pptYellow solution	Primary aromatic amine presentPrimary aliphatic amines